Evaluasi dan Optimasi Pengelolaan Pariwisata Grobogan Berdasarkan Analisis Data-Text Mining pada Google Review

Authors

  • Asep Koswara Universitas Koperasi Indonesia

DOI:

https://doi.org/10.58684/paradigma.v2i1.24

Keywords:

Grobogan Tourism, Text Mining, Google Review, Sentiment Analysis, Destination Evaluation, Tourism Infrastructure, Data-Driven Management

Abstract

This study aims to evaluate and optimize tourism management in Grobogan Regency through the analysis of tourist reviews on Google Review. A total of 200 reviews from ten popular tourist destinations were analyzed using a text mining approach, involving data preprocessing, bigram and trigram pattern identification, thematic categorization, and sentiment analysis. The findings reveal that the most common complaints concern inadequate infrastructure, limited public facilities, and poor maintenance by tourism managers. Despite the natural appeal of several sites, the lack of supporting infrastructure negatively affects visitor satisfaction. Thematic analysis identified five key issues: cleanliness, accessibility, facilities, services, and ticket pricing. Sentiment analysis results showed that 60% of reviews were positive, 30% negative, and 10% neutral. Based on these insights, the study proposes several strategic recommendations, including infrastructure improvements, local community engagement, and continuous digital evaluation. The study demonstrates that online reviews provide valid and real-time data for assessing tourism performance and can serve as a foundation for evidence-based policy. The implications highlight the importance of collaboration among local governments, tourism stakeholders, and communities to establish adaptive, participatory, and sustainable tourism management practices.

References

Assiva, M. A. (2024). Analisis Sentimen Terhadap Pariwisata di Kabupaten Grobogan Berbasis Orange Menggunakan Naive Bayes. Innovative: Journal of Social Science Research, 4(6), 2351–2359.

Bagasta, A. R., Iswara, C., & Lasally, A. (2021). Analisis potensi wisata menggunakan informasi geografis dan strategi pengembangan pariwisata berkelanjutan berbasis masyarakat di desa Sumberagung, Grobogan, Jawa Tengah. Jurnal Kepariwisataan Indonesia, 15(2), 148–157.

Cambria, E., Schuller, B., Xia, Y., & Havasi, C. (2017). New avenues in opinion mining and sentiment analysis. IEEE Intelligent Systems, 28(2), 15–21.

Hasanah, W. P. (2024). Usulan Perbaikan Kualitas Aplikasi Reddoorz Berdasarkan Ulasan Pengguna Pada Google Playstore menggunakan Text Mining (Disertasi, Universitas Islam Indonesia).

Ipmawati, J., Saifulloh, S., & Kusnawi, K. (2024). Analisis Sentimen Tempat Wisata Berdasarkan Ulasan pada Google Maps Menggunakan Algoritma Support Vector Machine. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 4(1), 247–256.

Kouloumpis, E., Wilson, T., & Moore, J. (2011). Twitter sentiment analysis: The good the bad and the OMG! In Proceedings of the Fifth International AAAI Conference on Weblogs and Social Media (pp. 538–541).

Laksono, N. F., Chawa, A. F., & Yuliati, Y. (2020). Pengelolaan Pariwisata Berbasis Pemberdayaan Masyarakat (Studi Kasus Desa Sawentar). Briliant: Jurnal Riset dan Konseptual, 5(4), 865–878.

Liu, B. (2020). Sentiment Analysis: Mining Opinions, Sentiments, and Emotions (2nd ed.). Cambridge University Press.

Neuman, W. L. (2014). Social Research Methods: Qualitative and Quantitative Approaches (7th ed.). Pearson.

OECD. (2020). OECD Tourism Trends and Policies 2020. https://www.oecd.org/publications/oecd-tourism-trends-and-policies-20767773.htm

Rahmawati, I., & Putra, A. N. (2022). Analisis Sentimen Ulasan Wisatawan Menggunakan Metode Naive Bayes pada Ulasan Google Review: Studi Kasus Jawa Tengah. Jurnal Ilmiah Komputer Terapan, 6(1), 45–52.

Rifdah, B. N., & Kusdiwanggo, S. (2024). Faktor-Faktor yang Memengaruhi Partisipasi Masyarakat dalam Pengembangan Kawasan Pariwisata di Indonesia: Tinjauan Literatur Sistematis. Jurnal Lingkungan Binaan Indonesia, 13(2), 75–85.

Safitri, A. N. (2022). Pengembangan Desa Wisata Berbasis Sentra Industri Garam di Desa Jono, Kecamatan Tawangharjo, Grobogan (Disertasi, Universitas Muhammadiyah Surakarta).

Siering, M., Deokar, A. V., & Janze, C. (2018). Disentangling consumer recommendations: Explaining and predicting airline recommendations based on online reviews. Decision Support Systems, 107, 52–63. https://doi.org/10.1016/j.dss.2018.01.001

Somantri, O., & Dairoh, D. (2019). Analisis Sentimen Penilaian Tempat Tujuan Wisata Kota Tegal Berbasis Text Mining. JEPIN (Jurnal Edukasi dan Penelitian Informatika), 5(2), 191–196.

Sri, L., & Saiful, N. B. (2024). Analisis Sentimen Berdasarkan Hasil Review Lokasi Google Map Menggunakan Natural Language Toolkit TextBlob dan Naïve Bayes. JAMI: Jurnal Ahli Muda Indonesia, 5(2), 114–126.

Tan, P.-N., Steinbach, M., & Kumar, V. (2006). Introduction to Data Mining. Pearson Addison Wesley.

Traveloka. (2025, April 28). 10 Rekomendasi Destinasi Wisata di Grobogan. https://www.traveloka.com/id-id/explore/destination/destinasi-wisata-di-grobogan-yang-paling-banyak-dikunjungi-acc/182002

UNWTO. (2021). Tourism and the Sustainable Development Goals. https://www.unwto.org/sustainable-development

World Bank. (2022). Tourism for Development: An Assessment of the Economic Impact of Tourism. https://www.worldbank.org/en/topic/tourism/publication/tourism-for-development

Xu, X., Li, Y., Wang, X., & He, L. (2021). Exploring the impact of online reviews on hotel booking intention: The role of review sentiment, review volume, and review rating. International Journal of Hospitality Management, 92, 102719.

Downloads

Published

2025-06-30

How to Cite

Koswara, A. (2025). Evaluasi dan Optimasi Pengelolaan Pariwisata Grobogan Berdasarkan Analisis Data-Text Mining pada Google Review. Jurnal Paradigma Grobogan, 2(1), 122–142. https://doi.org/10.58684/paradigma.v2i1.24

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.